
<name> Class: Honors Geometry Date: 9/14/06 Topic: Lesson 4-5 (Isosceles & Equilateral Triangles)

Theorem 4-3	<u>Isosceles Triangle Theorem</u> If 2 sides of a Δ are \cong , the \angle 's opposite those sides are \cong .
	Proof: Given: $\overline{XY} \cong \overline{XZ}, \overline{XB}$ bisects $\angle YXZ$ Prove: $\angle Y \cong \angle Z$
	Proof: $\overline{XY} \cong \overline{XZ}$ $\angle 1 \cong \angle 2$ $\overline{XB} \cong \overline{XB}$ $\Delta XYB \cong \Delta XZB$ $\angle Y \cong \angle Z$ Q.E.D. Q.E.D. $Given \qquad Y \swarrow \qquad B$ $Given \qquad B$ Defn. angle bisector $Reflexive POCCPCTCQ.E.D.$
Theorem 4-4	<u>Converse of Isosceles Triangle Theorem</u> If $2 \angle s$ of a $\Delta \operatorname{are} \cong$, the sides opposite the $\angle s$ are \cong .
	$\overline{XY} \cong \overline{XZ}$
Theorem 4-5	The bisector of the vertex \angle of an isosceles Δ is the \perp bisector of the base. $\overline{XB} \perp \overline{YZ}$ and \overline{XB} bisects \overline{YZ}
Definition	<u>Corollary</u> A statement that follows immed fm a thm
Corollary to Theorem 4-3	If a Δ is equilateral, the Δ is equiangular $\overline{XY} \cong \overline{YZ} \cong \overline{XZ}$
Corollary to Theorem 4-4	If a Δ is equiangular, the Δ is equilateral $\angle X \cong \angle Y \cong \angle Z$

<name> Class: Honors Geometry Date: 9/14/06 Topic: Lesson 4-5 (Isosceles & Equilateral Triangles)

